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Abstract. Surface waves in water or granular layers and on the surface of weakly cohesive upper-
lying soils are studied. A one-dimensional perturbed wave equation is derived for these waves. It
is shown that the waves may be excited due to local topographies and a vertical excitation. The
velocity of the waves depends on the geometry of the layer, the mechanical properties of the material
and the vertical forced acceleration. Approximate solutions of the equation are presented which
take into account resonant, nonlinear, dispersive, dissipative, topographic and parametric effects.
The solutions describeunfamiliar waves which cannot be classified as soliton-, cnoidal-, shock- or
breather-type waves. In particular, the solutions describespatiotemporally oscillating, localized,
nonlinear, surface waves which possess properties of bothstandingwaves andtravelling waves.
They are not d’Alembert-type waves. Different wave patterns are yielded by the solutions in thex–t
plane. Topographic and parametric effects are analysed. Sometimes these effects are dependent.
The topographic effect explains some unexpected results of both experiments and earthquakes. An
observation of Charles Darwin is discussed. Perhaps the solutions describe waves which may be
in different wave fields of Nature.

1. Introduction and governing equation

Following Chladni’s research, Faraday [1] explored vertically vibrated layers of sand-like
materials and liquid. He found that small mounds formed. For liquid, surface waves oscillating
at precisely half the forcing frequency of the bed were discovered. Rayleigh [2] suggested that
the waves were the result of the parametric resonance. This idea was developed in different
publications [3, 4]. Recent experimental studies of vertically vibrated liquid or granular media
demonstrated a rich variety of nonlinear wave phenomena, depending on the amplitude and
frequency of the excitation [5–8]. Physicists suggested these phenomena were possibly relevant
to areas of physics as remote as semiconductors, earthquakes and clustering of galaxies. In
particular, spatially localized, oscillating excitations (oscillons) were observed [6] on the
surface of a layer of vertically vibrated brass balls. Recently, a few models [9] have been
proposed, useful for interpretation of the experimental data. Results of numerical simulations
were presented for layers having a constant thickness [9].

However, perturbations of the thickness of the layer may be important for the vertically
excited surface waves. Oscillons did not form spontaneously from the flat layer. One can start
these waves by touching the ‘sand’ surface with a pencil [7]. According to [8] the lateral motion
of grains is possible if there is some slope of the free surface. Soliton-type travelling waves
can be excited on the surface of the vertically vibrated heap of sand [5]. Thus, the vertically
excited oscillations may be generated and amplified due to local topographies on the layer
surface. Indeed, amplification of seismic waves due to topographies is a well known effect
in seismology. Apparently, Charles Darwin [10] first highlighted crest amplification when
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he described the results of the 20 February 1835 Chilean earthquake. A local amplification,
observed in the field, can reach a factor of 75 [11]. This agrees with analytical investigations
of resonant seismic waves [12] which were published recently (see also [13]).

We shall consider in this paper waves which are long with respect to thicknessh of the
surface layer. The composition of the layers is considered as a compound of pure material
(solid or liquid phase) and gas. Let us assume that the exchange of the mass, momentum and
energy between the gas and the pure material is negligible. The gas and the pure material have
the same velocity and pressure. Particles of the pure material are elastic and very small. Due
to the above assumption we can describe the behaviour of the material by the equations of
continuum where space-averaged values are used. Properties of the material, as a two-phase
medium, will be described with the help of a state equation.

In what follows, one-dimensional equations are presented for surface waves in layers
having a slightly varying thicknessh. In this section, a perturbed wave equation is derived
for weakly nonlinear waves. These equations are written with the help of unknown values
which are averaged over the thickness. As an example of the averaging, we give an expression
for the thickness-averaged pressureP : P − Pa = h−1

0

∫ h0

0 (P∗ − Pa) dy, whereh0 is a mean
thickness of the layer,y is a vertical coordinate directed upwards from the bed,P∗ is the
pressure depending ony, andPa is the atmospheric pressure. Let us assume for pressureP∗
the following law: P∗ − Pa = ρg(h − y + η), whereρ is the density,g = g0 + gy , g0 is the
acceleration due to gravity,gy = gy(t) is the excited acceleration of the layer andη denotes
an elevation of the surface. On the vibrating bedy = 0 andP∗ −Pa = ρg(h+η). On the free
surfacey = h + η andP∗ − Pa = 0. The above law for the pressure is the basis of the theory
of shallow-water waves.

Basic equations. Following Airy’s method [14] and introducing averaged unknowns we can
write equations of motion and continuity for the surface layer:

ρ0h(utt −X) = σx(h + η) (1)

h = (h + η)(1 +ux). (2)

Here t is time, x is a horizontal Lagrangian coordinate,u is a horizontal displacement,X
is a horizontal acceleration,σ is a stress, and subscriptst andx indicate the time and space
derivatives, respectively. For the mean densityρ0 we haveρ0 = ρ0(1−φ0)+ρ0gφ0, whereφ0

is the mean voidage (volume of the gas averaged over the thickness of the layer),ρ0 andρ0g

are the densities of the pure material and gas, respectively.
We assume a viscous model for the material. For upperlying thin layers and the weakly

cohesive materials with the voidage fractionφ, this model is presented as

σ = −P + Pa + 4[ν(1− αsφ)ux + η∗(1− ανφ)uxt ]/3 (3)

whereν andη∗ are the elastic shear modulus and an effective viscosity, respectively. The
latter is a function of the material viscosity and the bottom friction. We emphasize thatη∗ can
depend on the time during the vertical excitation(η∗ = η∗(t)). In particular, for the flying
time the bottom friction disappears. An approximate dependence ofη∗ on the time will be
presented in section 4.1. Coefficientsαs andαν in (3) are experimentally defined constants.
They depend strongly on properties, an interaction and a quantity of the particles in a unit
volume of the material. In (3) valuesαsφ andανφ lie between 0 and 1. These values take
into account the dependence of properties of the material and the layer on the voidageφ. If
αsφ→ 1, then the material transits into the so-called fluidized state and dissipative properties
of the material can reduce according to (3).
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We can write, following the theory of shallow waves [14, 15], the improved expression
for the pressure:

P − P+a = ρh−1
0

∫ h0

0

[
g(h− y + η) +

∫ h+η

y

ζ ∗t t dy

]
dy (4)

whereζ ∗ is a vertical displacement. Following Boussinesq [16] we shall assume that this
displacement is the function of the elevation of the free surface:

ζ ∗ = η(h + η)−mym. (5)

Herem is an integer andm > 1. The original work of Boussinesq [16] was restricted to an
incompressible homogeneous inviscid fluid wherem = 1. One can see that, according to
formula (4), the pressure can have a large negative value ifg has a large negative value and
ρ is constant. However, this result is impossible for long waves and gassy, weakly cohesive
media (water, granular materials and some soils). Therefore, we must take into account the
compressibility of the materials. In particular, the gas extends in tension zones (the cavitation
phenomenon) and changes completely the properties of the material. For the compound an
equation of state may be presented in the following way:

ρ = ρ0{(1− φ0)[1− λ(P − Pa)] + φ}−1 (6)

whereλ is the compressibility of the pure material. Equation (6) was given in [17] and used in
[18] where waves in a bubbly liquid were studied. A modified equation (6) was given in [12]
for a particle–air–liquid mixture. We can now express the connection between the gas volume
and the pressure. For the long waves the gas oscillations may be considered as isothermal.
Therefore, we have the following connection:

P = Paρgρ−1
0g = Paφ0φ

−1. (7)

Taking into account (7) we rewrite equation (6) asλP 2 − [1 + λPa − ρ0ρ
−1(1− φ0)

−1]P −
Paφ0(1− φ0)

−1 = 0. The latter yields that

P = 0.5λ−1(1− φ0)
−1{b0 + [b2

0 + 4λφ0Pa(1− φ0)]
0.5} (8)

whereb0 = (1−φ0)(1+λPa)−ρ0ρ
−1. According to (8) the pressure in the layer always exceeds

zero ifφ0 6= 0. Generally speaking, we can use (8) as a state equation for the layer material.
This equation shows that the pressure in the layer is positive for any vertical excitation, even
whenρ → 0.

Equations (1)–(7) form a strictly nonlinear system for the elevation of the surface and
the thickness-average displacement, pressure, density and voidage. The vertical displacement
is defined by (5) for differentm. Thus the variation of the average and the non-average
displacement, pressure, density and voidage, along the vertical coordinatey may be studied
with the help of system (1)–(7). Let us consider weakly nonlinear surface waves. This case
may be studied by the perturbation method.

Weakly nonlinear waves.It follows from equations (1) and (2) thatρ0(1+ux)(utt−X) = σx .
Then one can obtain using (3) that

ρ0(1 +ux)(utt −X) = −Px + 4[ν(1− αsφ)uxx + η∗(1− ανφ)uxxt ]/3
−4φx(ναsux + η∗ανuxt )/3. (9)

Let us expressPx in (9) with the help ofu, assuming thatm = 1 in (5). One can find from (4)
that

p = P − P0 = −g0ρ0(h− 0.5h0) + gρ(h− 0.5h0 + η) + 0.5ρ[(η + h)2 − h2
0/3]

×{ηtt [(η + h)−1− η(η + h)−2] − 2η2
t [(η + h)−2 − η(η + h)−3]}
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whereP0 = Pa + g0ρ0(h − 0.5h0). For simplicity we assume here thath � η and
P0 � g0ρ0(h − 0.5h0). In this case, approximately,p = gρ(h − 0.5h0 + η) + ρh0ηtt /3
and, according to (6),ρ = ρ0(1− φ0 +φ)−1. We neglected in the latter the compressibility of
the pure material. As a result one can write the next equation forp:

p(1 +φ − φ0) = gρ0η + gρ0(h− 0.5h0) + ρ0h0ηtt /3. (10)

Here, according to (2) and (7), we haveη = −hux(1 + ux)−1 = −hux(1− ux + u2
x − · · ·),

φ = φ0(1 +pP−1
0 )−1 = φ0(1− pP−1

0 + p2P−2
0 − p3P−3

0 . . .). Now, by the iteration method,
one can find from (10) the perturbationp as a function of the displacementu. The first
approximation isp = gρ0(h− 0.5h0 − hux). The second approximation yields

p = b2 − b1ux + b3u
2
x − gρ0h

3
0uxxx/3

where

b1 = ghρ0[1 + gρ0(2h− h0)φ0P
−1
0 ]

b2 = gρ0(h− 0.5h0)[1 + gρ0(h− 0.5h0)φ0P
−1
0 ]

b3 = ghρ0(1 +ghρ0φ0P
−1
0 ).

One can see that the second approximation depends on the mean voidage. The third
approximation we shall present as

p = P − P0 = gρ0(h− 0.5h0)− φ0g
2ρ2

0(h− 0.5h0)
2P−1

0 − ghρ0(1− ux + u2
x)ux

−φ0h
2
0g

2ρ2
0P
−1
0 ux − gρ0h

3
0uxxx/3. (11)

We assumed for the thin layers thatφ0� 1, |h/h0−1| � 1 and neglected in (11) small terms
containingφ2

0h
2
0 orφ0h

3
0. Now expression (11) is substituted in (9). Let the dissipative term in

(9) be second order with respect tou. Nonlinear terms will be considered in (9) which do not
depend explicitly on the dissipative and dispersive effects. It is also assumed that linear and
nonlinear terms containing partial derivatives ofh (for example,ρghxux) are negligible. This
simplifies the analysis of the influence of nonlinearity, topography and the parametric effect
on the surface waves. Taking into account the comments above, one can obtain from (9) and
(11) the following equation:

ρ0(utt −X)− [ghρ0 + φ0g
2h2

0ρ
2
0P
−1
0 + 4

3ν(1− φ0αs)]uxx = −gρ0hx + 4
3η
∗(1− φ0αν)uxxt

+gρ0h
3
0uxxxx/3− [3ghρ0 + 4

3ν(1− φ0αs)]uxuxx

+[6ghρ0 + 4
3ν(1− φ0αs)]u

2
xuxx. (12)

Some coefficients in (12) depend onφ0. Generally speaking, the voidageφ0 depends on the
amplitude and the frequency of the forced oscillations. If the variation ofφ0 is very small then
we can neglect this dependence over a few oscillations and use equation (12). However, this
effect can accumulate and change the coefficients in (12) over a long period of time. According
to [19] this process may be studied with the help of the fully nonlinear equations (1)–(7). Below
we shall consider a case whenφ0 is constant. It is also assumed that|ghρ0| � φ0g

2h2
0ρ

2
0P
−1
0 .

For this case equation (12) may be rewritten so that

utt − a2
0uxx = −ghx + βuxuxx + β1uxxu

2
x +µutxx + kuxxxx −X (13)

wherea2
0 = a2

f + a2
s , a

2
f = gh, a2

s = 4
3νρ
−1
0 (1− φ0αs), β = −3a2

f − a2
s , β1 = 6a2

f + a2
s ,

µ = 4
3η
∗(1− φ0αν)ρ

−1
0 andk = gh3

0/3. The terma2
0uxx takes into account the parametric

effect, sincea2
0 = gh+a2

s andg is a time-dependent acceleration. The nonlinear terms in (13)
are of second and third order with respect tou. The dissipative term depends on the mean
voidage. Generally speaking, the dissipative term is first order but we shall assume that this
term andkuxxxx are second order. The termghx in (13) takes into account the topographic
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effect. Thus equation (13) combines both the topographic and parametric effects. We shall
consider below a case whenX = 0. Leta2

s = 0. In this case the velocity of the surface waves
can have an imaginary value ifg = g0 + gy < 0 andφ0 = 0. One can see from (12) that
any voidage hinders the generation of the imaginary velocity and the imaginary velocity is
impossible ifφ0 is large enough.

The wave velocitya0 depends on the vertical acceleration and the thickness of the layer.
For weakly cohesive media and an extensive vertical excitation this velocity may be strictly
different during flying and contact times. Any voidage reducesa0. On the other hand, the
wave velocity is defined by the elastic shear modulus. One can see that the effects of the
vertical acceleration and the thickness on the wave velocity is not important for tight materials.
However, these effects may be important for weakly cohesive soils, liquefiable soils and soft
media.

The amplitude of the earthquake-induced vertical acceleration may be of the order of
10 m s−2. Leth be of order 10 m. In this case the parametric earthquake-induced long waves
may be excited on the surface of noncohesive (or weakly cohesive) soils and the soft sediment
according to the presented theory. In particular, the parametric earthquake-induced surface
long waves may be excited in sea/soft sediment systems. At the same time these waves are
impossible for the tight geomaterials according to (13).

Thus, the parametric effect depends on the level of the excitation and may be quite different
for liquid and solid media [13]. At the same time, the topographic effect may be important
for any excitation and both for solid and liquid media. We shall consider here the topographic
effect for weak and extensive vertical excitations. For the former the parametric effect is
not important. This case will be studied in sections 2 and 3. For extensive excitation both
parametric and topographic effects may be important. This case will be considered in section 4.

Remark. Generally speaking, equation (13) describes the surface waves in any solid
upperlying layers with a slightly variable thickness if model (3) and expression (4) for the
pressure are valid. Equation (13) also describes a propagation of one-dimensional body waves
in different media (bubbly liquid, porous rock, porous material saturated by a bubbly liquid
and so on [12]) ifhx = 0. The coefficients in (13) for these media are presented in [12]. In
particular, equation (13) was used for the study of resonant waves excited in different resonators
[12, 13].

2. Forced and free waves (fixed boundaries)

2.1. Perturbation method

Nonlinear periodical waves in physical systems without dissipation and dispersion have been
intensively studied [20]. Here, the waves in a closed driven-disspative–dispersive system will
be explored whengy(t) � g0 anda0 may be considered as constant. In this case the bottom
friction depends weakly on time and, approximately,η∗ is constant. As a result we have
constant coefficients in (13). The latter may be solved by the method suggested in [21]. Let
us introduce deformable coordinatesr ands:

r = t − xa−1
0 + βua−3

0 /4 s = t + xa−1
0 − βua−3

0 /4. (14)
Now one can find new expressions for terms in (13). For example,ut = urrt + usst =
ur(1 +βut/4a3

0) + us(1− βut/4a3
0) ≈ (ur + us)[1 +A∗(ur − us) +A2

∗(ur − us)2], where the
subscriptsr ands refer to partial derivatives with respect tor ands. Then, neglecting terms
of fourth order, we can rewrite (13) so that
urs = −ga−1

0 (hs − hr)/4 +A∗(ususs − ururr ) + 0.25a−2
0 [µ(urrr − urrs − ussr + usss)
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+k(urrrr − 2urrss + ussss)] + a∗urus(urr + uss) + b∗[urr(us)2 + uss(ur)
2]

+c∗[urr(ur)2 + uss(us)
2]. (15)

HereA∗ = βa−3
0 /4,a∗ = 5A2

∗ −2D∗, b∗ = −2A2
∗ +D∗, c∗ = −4A2

∗ +D∗,D∗ = β1/4a4
0. We

did not take into account the influence of dispersion and dissipation on the nonlinear terms in
(15). A solution of (15) is sought as a sum:u = u1 + u2 + u3, whereu1 � u2 � u3. Thus a
solution of (15) is sought by the perturbation method. This method has a broad application in
physics. At the same time there is a serious difficulty with the application of this method. This
difficulty has the form of the so-called ‘secular terms’ which are generated by nonlinearity and
grow infinitely whent →∞. We shall meet these terms later. Substituting the sum into (15)
and equating terms of the same order one can obtain the following linear differential equations:

u1rs = −0.25ga−1
0 (hs − hr) (16)

u2rs = A∗(u1su1ss − u1ru1rr ) + 0.25a−2
0 [µ(u1rrr − u1rrs − u1ssr + u1sss)

+k(u1rrrr − 2u1rrss + u1ssss)] (17)

u3rs = A∗(u1su2ss + u2su1ss − u1ru2rr − u2ru1rr ) + a∗u1ru1s(u1rr + u1ss)

+b∗[u1rr (u1s)
2 + u1ss(u1r )

2] + c∗[u1rr (u1r )
2 + u1ss(u1s)]

2. (18)

The d’Alembert-type solution of the nonhomogeneous wave equation (16) is

u1 = J1(r) + j1(s)− 0.25a−1
0

∫ ∫
g(hs − hr) dr ds. (19)

Further, the wave-type solution of (17) is given by

u2 = J ∗2 (r) + j ∗2 (s)− 0.5A∗{s[J ′1(r)]2 − r[j ′1(s)]2} + a−2
0 {µ[sJ ′′1 (r) + rj ′′1 (s)]

+k[sJ ′′′1 (r) + rj ′′′1 (s)]}/4. (20)

Here, the prime denotes differentiation with respect to the appropriate variable:r or s (14).
Only bounded solutions of equation (13) are considered in this paper. The secular terms in
(20) are eliminated if

J ∗2 (r) = J2(r) + 0.5rA∗[J ′1(r)]
2 − a−2

0 [µrJ ′′1 (r) + krJ ′′′1 (r)]/4

j ∗2 (s) = j2(s)− 0.5sA∗[j ′1(s)]
2 − a−2

0 [µsj ′′1 (s) + ksj ′′′1 (s)]/4.

Using the expressions foru1 andu2 one can findu3 from (18):

u3 = J ∗3 (r) + j ∗3 (s)− A∗sJ ′1J ′2 +A∗rj ′1j
′
2 + a∗[j1(J

′
1)

2 + J1(j
′
1)

2]/2 + (b∗ − A2
∗/2)

×
[
J ′1

∫
(j ′1)

2 ds + j ′1

∫
(J ′1)

2 dr

]
+ (c∗/3− A2

∗/2)[r(j
′
1)

3 + s(J ′1)
3]

+A2
∗(s

2/2− rs)J ′′1 (J ′1)2 +A2
∗(r

2/2− rs)j ′′1 (j ′1)2.
HereJ1 = J1(r), j1 = j1(s), J2 = J2(r), j2 = j2(s). The secular terms are eliminated if

J ∗3 (r) = J3(r) +A∗rJ ′1J
′
2 − (c∗/3− A2

∗/2)r(J
′
1)

3 +A2
∗r

2J ′′1 (J
′
1)

2/2

j ∗3 (s) = j3(s)− A∗sj ′1j ′2 − (c∗/3− A2
∗/2)s(j

′
1)

3 +A2
∗s

2j ′′1 (j
′
1)

2/2.

Finally, the approximate bounded solution of (13), presented with the help of deformable
coordinater ands (14), is

u = J1 + j1− 0.25a−1
0

∫ ∫
g(hs − hr) dr ds + J2 + j2 + 0.5A∗(r − s)[(J ′1)2 + (j ′1)

2]

+a−2
0 (s − r)[µ(J ′′1 − j ′′1 ) + k(J ′′′1 − j ′′′1 )]/4 +A∗(r − s)(J ′1J ′2 + j ′1j

′
2)

+J3(r) + j3(s) + 0.5a∗[j1(J
′
1)

2 + J1(j
′
1)

2] + (b∗ − 0.5A2
∗)

×
[
J ′1

∫
(j ′1)

2 ds + j ′1

∫
(J ′1)

2 dr

]
+ (c∗ − 1.5A2

∗)(r − s)[(j ′1)3− (J ′1)3]

+0.5A2
∗(r − s)2[J ′′1 (J

′
1)

2 + j ′′1 (j
′
1)

2] + xd + d1. (21)
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HereJ1, j1, J2, j2, J3(r), j3(s) are unknown functions defined by boundary conditions;d and
d1 are constants which take into account an initial state of the layer. The double integral
in (21) takes into account the topographic effect. One can consider (21) as the approximate
d’Alembert-type solution of the perturbed wave equation (13). If perturbations of the thickness
of the layer due to the topography are small and|h/h0 − 1| � 1, then the above theory is
applicable. Various site topographies may be on the free surface and the underlying bed of the
layer. They may be described by the standard Fourier expansion.

2.2. Boundary problem and basic equation

Let us assume thathx =
∑

i Hi cosiπx/L(i = 0, 1, 2, 3, . . . I ) andgy = δ cosωt (δ � g0).
A layer of variable thickness embedded in a rigid basin will be considered. The length of the
layer isL. Lateral flanks of the basin are perpendicular to the bed. They are located atx = 0
andx = L. Thus, boundary conditions are

u = 0 at x = 0 and x = L. (22)

Linear oscillations. Following [13] one can find thatJ1(r) = F(r)− ϕ cosωr + d∗,

j1(s) = −F(s)− ϕ cosωs + d∗ where ϕ = −0.5δ
∑
i

Hi [ω
2 − (πia0/L)

2]−1

d∗ = 0.5g0L
2π−2a−2

0

∑
i

Hii
−2 and

F(r) = δ sinωr

2 sinωLa−1
0 + kLω3a−3

0 cosωLa−1
0

∑
i

Hi [(−1)i − cosωLa−1
0 ]

[ω2 − (πia0/L)2]

−0.5d2a0L
−1r.

(23)

Here d2 = g0L
2π−2a−2

0

∑
i [(−1)i − 1]Hii−2. Thus, travelling horizontal waves are

excited due to the vertical excitation ifhx 6= 0. The resonant frequencies of the layer
are defined approximately as�lN = �Nl + ω∗, where�Nl = Nπa0/L and ω∗ =
ka0L

−3π3N3(−1)N+1/2(N = 1, 2, 3, . . .). If the coefficientk is very small, we obtain
�lN = �Nl . Thus, the dispersion shifts the resonant frequencies. For the caseω2 = (πia0/L)

2

in (23) the double integral in (21) must be recalculated. We shall concern ourselves with this
topographic resonance in sections 4.4 and 4.5.

Nonlinear oscillations. Let us consider nonlinear oscillations excited near and at the resonant
frequencies. In this case we suggest, considering the second boundary condition (22), that

|F(r)| � ϕ cosωr − d∗ |F(s)| � ϕ cosωs − d∗. (24)

FunctionF(s) is expanded in Taylor’s series atx = L:

F(s) = F [r + 2Nπ/ω + 2ω−1a−1
0 L(ω1 + ω∗)− βa−3

0 u/2]

= F(r) + 2ω−1a−1
0 L(ω1 + ω∗)F ′(r) + 2ω−2a−2

0 L2(ω1 + ω∗)2F ′′(r)

+4ω−3a−3
0 L3(ω1 + ω∗)3F ′′′(r)/3 + · · · (25)

whereω = �lN + ω1 andω1 is a perturbation of a resonant frequency. It was assumed that
F(r + 2Nπ/ω) = F(r) andu = 0 in (25). Then we rewrite the second boundary condition
(22) using (21), (24) and expansion (25):

−2Nπ(ω1 + ω∗)ω−2F ′ − 1
2βLa

−4
0 (F ′)2 +µ∗La−3

0 F ′′ + k∗La−3
0 F ′′′

= l cosωt +Ld + d1 + d2 (26)
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whereµ∗ = µ − 2a0ω
−2L(ω∗ + ω1)

2, k∗ = k − 4ω−3L2(ω∗ + ω1)
3/3, l = δ

∑
i Hi [ω

2 −
(πia0/L)

2]−1[cosωLa−1
0 − (−1)i ], and only the linear and quadratic terms are written.

It should be emphasized that the dissipative and dispersive terms in (26) depend onω.
Equation (26) may be rewritten so that

(F ′ − 2Rπ−1√ε)2 − µ∗ωa0β
−1F ′′ − 0.5k∗a0ω

2β−1F ′′′ = ε cos2 τ. (27)

HereF ′ = dF/dτ . We introduced a modified time variableτ = ωt/2 and assumed thatε =
−4la4

0(βL)
−1,R = −πa3

0(ω1 +ω∗)/(βωε0.5) andLd +d1 +d2 = l + 2Lβ−1ω−2a2
0(ω
∗ +ω1)

2.
Equation (27) is obtained in [13]. This is the perturbed compound Burgers–Korteweg–de Vries
equation for the travelling wave. Generally speaking, this equation is valid for both vertical-
and horizontal-excited waves [13]. Equation (27) has the nonlinear term that tends to produce a
‘discontinuity’ in the wave. The second term dissipates the wave through a viscous-like effect.
The third term disperses the wave. Because of this term a solitary-like wave may be excited.
One can see that a balance between these terms varies together with the excited frequency
[13]. In particular, equation (27) may simplify to the perturbed Korteweg–de Vries or Burgers
equations in the trans-resonant range. We will seek solutions of (27) in the form:

F ′ = √ε[2R/π +8(τ) cosτ ] (28)

where8(τ) is an unknown function andR is a trans-resonant parameter. As a result we obtain
the next basic equation:

a1(8
′ −8 tanτ) + a2(8

′′ − 28′ tanτ −8) = −√ε(1−82) cosτ. (29)

Herea1 = ωa0β
−1(µ− 2εβ2π−2a−5

0 LR2), a2 = a0ω
2β−1(3k + 4β3ε3/2π−3a−9

0 L2R3)/6.

2.3. Trans-resonant evolution of localized forced surface waves

Solutions for different particular cases of equation (29) are presented in [13]. Here a special
case of equation (29) is considered when

|8′| � 8 tanτ and |8′′| � 28′ tanτ +8. (30)

Thus, we will seek fast varying solutions. In this case equation (29) yields

a18
′ + a28

′′ = −√ε(1−82) cosτ. (31)

Let the approximate solution of (31) be a sum of travelling waves:

8(2ω−1ξ) = A tanh(e sinM−1ξ − eR) + [B sech2(e sinM−1ξ − eR) +C] cosξ (32)

whereA, B, C ande are unknown constants,ξ = 1
2[ωt ± (ωa−1

0 x − πN) ∓ A∗ωu], andM
will be defined later. It is assumed that|e| � 1, sinM−1ξ − R � 1 and sinξ � 1. For
the last case the conditions (30) take place. Solution (32) describes the interaction and the
competition between the nonlinear, viscous-like and dispersive-like effects. We will consider
two scenarios of the competition in the trans-resonant range.

First scenario (C 6= −B). Expression (32), wherex = L, is substituted into (31).
Next, equating to zero nonlocalized terms, and terms contain sech2(e sinM−1τ − eR), or
sech4(e sinM−1τ − eR) or tanh(e sinM−1τ − eR) sech2(e sinM−1τ − eR) we obtain four
equations:

a2C cosτ = ε0.5(1− A2 − C2 cos2 τ) cosτ (33)

a1M
−1eA cosM−1τ + a2B(4M

−2e2 cos2M−1τ − 1) cosτ = −ε0.5(A2 − 2BC cos2 τ) cosτ

(34)

6a2M
−2e2 cos2M−1τ cosτ = −ε0.5B cos3 τ (35)

a1M
−1eB cosM−1τ cosτ + a2M

−2e2A cos2M−1τ = −ε0.5A(B +C) cos2 τ. (36)
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We used in (31) that

sinM−1τ − R � 1 sinτ � 1 2ACε0.5 tanh3(e sinM−1τ − eR) cos2 τ ≈ 0
sech2(e sinM−1τ − eR) sinM−1τ ≈ 0
tanh(e sinM−1τ − eR) sech2(e sinM−1τ − eR) sinM−1τ ≈ 0.

(37)

Thus solution (32) is practically correct if sinM−1τ − R � 1, sinτ � 1 andR � 1. We
suggest in (33)–(36) that

cosM−1τ ≈ cosτ. (38)

Thus we consider the solution localized near pointsτ = MπK(K = 1, 2, 3, . . .). One can see
that only odd subharmonic(M = 3, 5, 7, . . .) oscillations are described by (32), if (38) holds.
These oscillations satisfy condition (25) for any odd resonant frequency and may be excited in
odd trans-resonant frequency bands. We note that the subharmonic oscillations withM = 3
were observed in [22] nearωLa−1

0 = 3π (N = 3).
Due to (38) we obtain four algebraic equations from (33)–(36) forA,B,C ande. Generally

speaking, these equations may be solved by numerical methods. However, we will consider
here a few cases of an approximate solution of (33)–(36). The cases allow us to understand
the evolution of the waves.

(I). R3 ≈ − 3
4kπ

3a9
0β
−3ε−1.5L−2. In this casea2 ≈ 0 and we haveB ≈ 0 from (35).

Then, (36), (33) and (34) yieldC ≈ 0, A ≈ ±1 ande ≈ −ε0.5a−1
1 AM. The second

approximation is

A ≈ ±(1− 0.75C2)0.5 B ≈ −3C
e ≈ −ε0.5a−1

1 AM(1 + 5.25C2)

C ≈ 2a2a
−2
1 ε0.5.

(39)

Thus, solution (32) defines the shock-type wave if|e| � 1. However, a soliton-type wave
generates within the shock structure ifa2 6= 0. According to (39) the amplitude of the soliton
increases together with|a2|.

(II). We assume that|A| ≈ |B|. This is the case when the influence of the dissipation (the
first term in (31)) and the dispersion (the second term in (31)) is approximately the same. Since
e2� |e| we have from (33)–(35) that

A ≈ ±1 B ≈ ±1 e ≈ ±M(−a−1
2 ε0.5B/6)0.5 C ≈ −B/6. (40)

In this case solution (32) defines a wave which is too difficult to classify as a soliton- or
shock-type wave. The sign in front ofB is defined so thate is real.

(III). R2 ≈ 0.5µπ2ε−1β−2a5
0L
−1. In this casea1 ≈ 0 and equation (31) must have the

soliton-type solution. ThereforeA ≈ 0 and (33)–(35) and (38) yield

C ≈ ±1 B ≈ −3C e ≈ ±M(−0.5a−1
2 ε0.5C)0.5. (41)

The sign in front ofC is defined so thate is real. Now we can correctA using (36) so that

A ≈ −3a1a
−1
2 e−1M. (42)

Thus, within the soliton-type wave the shock-type wave is generated.
Generally speaking, solution (32) may be also valid behind the wave front if

AC tanh3(e sinM−1τ) � 1. The last restriction is not very severe becauseAC may be
very small in (37) (see (39), (40) and (42)).
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Second scenario(C = −B). If C = −B then we have from (32)

8(2ω−1ξ) = A tanh(e sinM−1ξ − eR)− B tanh2(e sinM−1ξ − eR) cosξ. (43)

Expression (43), wherex = L, is substituted into (31). Next, equating to zero the
nonlocalized terms and terms containing sech2(e sinM−1 tan−eR) or tanh(e sinM−1τ −
eR) sech2(e sinM−1τ − eR), we obtain three equations:

a2B cosτ = ε0.5(A2 − 1 +B2 cos2 τ) cosτ (44)

a1M
−1eA cosM−1τ − a2B(2M

−2e2 cos2 cos2M−1τ + 1) cosτ

= − ε0.5(A2 +B2 cos2 τ) cosτ (45)

a1M
−1eB cosM−1τ cosτ + a2M

−2e2A cos2M−1τ = 0. (46)

Considering (31) and solution (43) we assume

2ε0.5AB tanh3(e sinM−1τ − eR) ≈ 0
6a2e

2M−2B sech2(e sinM−1τ − eR) tanh2(e sinM−1τ − eR) ≈ 0
sech2(e sinM−1τ − eR) sinM−1τ ≈ 0
ε0.5B2 sech2(e sinM−1τ − eR) tanh2(e sinM−1τ − eR) ≈ 0.

(47)

Due to (38) we obtain three algebraic equations from (44)–(46) forA,B ande. The following
cases are now considered.

(IV). R3 ≈ − 3
4kπ

3a9
0β
−3ε−.15L−2. In this casea2 ≈ 0 and equation (46) yields thatB ≈ 0.

As the first approximation we have from (44) and (45, respectively:A ≈ ±1,e ≈ ε0/.5a−1
1 AM.

Then we correctB using (46). As a result,B ≈ a2a
−2
1 ε0.5. Thus, a soliton-type wave generates

within the shock structure. This case is reminiscent of case (I).

(V). |A| ≈ |B|. Equations (44) and (45) yieldA ≈ ±√4/7, B ≈ ±√4/7, e ≈
±M(ε0.5a−1

2 B)0.5. The sign in front ofB is defined so thate is real.

(VI). R2 ≈ 0.5µπ2ε−1β−2a5
0L
−1. In this casea1 ≈ 0 and, evidently,A ≈ 0. ThenB ≈ ±1

and one can find from (45) thate ≈ ±M(−0.5a−1
2 ε0.5B)0.5. The sign in front ofB is defined

so thate is real. Now it is possible to correctA. Using (46) one can find thatA ≈ a1a
−1
2 e−1M.

Solution (43) is valid if (47) takes place. Strictly speaking, this solution describes waves
only near points where sinM−1τ − R � 1 and sinτ � 1.

In figures 1 and 2 the surface waves calculated according to (32) and (28) are presented.
Dimensionless coordinate(x/L) and the linear expression for elevationη were used. For
simplicity we putR = 0. The amplitude of the waves changes, and they can form different
patterns in the trans-resonant range. We note that figure 1(c) corresponds to figure 1 from [8]
(see also section 4.5). From solution (43) pictures follow which are reminiscent of figures 1
and 2.

Thus in the trans-resonant bandsunfamiliar waves are generated. The amplitude and the
form of these waves depend strictly on the excited frequency. A front of the waves may be
localized. Behind the localization the high-frequency waves may be generated in some media
[22, 23]. For this case the solutions (32) and (43) must be corrected.

2.4. General solutions for forced waves in a rigid basin

Behind the fast-varying front8′′ ≈ 8 and equation (29) may be rewritten so that

8′′ −8 = q−1
0 (1−82) (48)
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Figure 1. Waves excited near the fundamental resonance(N = 1,M = 1). (a) Case (I) and
A = 1. (b) Case (II). (c) Case (III). (d) Case (I) andA = −1.

whereq0 = −k∗a0ω
2/(2β

√
ε). We assumed that the dissipative effect localizes in the front. It

is known that the Korteweg–de Vries equation (48) has a cnoidal-wave-type solution. Generally
speaking, this solution is expressed by Jacobi elliptic functions. However, the topic of this
paper is the approximate consideration of the wave processes. We will seek an approximate
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Figure 1. (Continued)
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Figure 2. Subharmonic resonant waves(N = 3,M = 3). (a) Case (I) andA = 1. (b) Case (II).
(c) Case (III). (d) Case (I) andA = −1.
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Figure 2. (Continued)
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solution to (48) in the form
8 = A1 +B1 sin2ωk(τ −1) (49)

where1 = arcsinR [13]. Expression (49) is substituted into (48). Next, equating to zero the
constant terms and the terms containing cos 2ωk(τ −1)we obtain two equations for unknown
valuesB1 andωk:

B1 = (1− A2
1 + q0A1)(A1− 0.5q0)

−1 ω2
k = 0.5(A1q

−1
0 − 0.5). (50)

We assumed thatA1� B1 and neglected in (48) terms which had orderB2
1. We also assumed,

definingω2
k , that|q0| � 1. Expressions (50) are defined by unknownA1. Let us findA1 using

solution (32). It follows from (32) and (49) that behind the frontA1 ≈ A+C. According to the
second scenario behind the frontA1 ≈ A−B. The last case corresponds to waves considered
in [13]. Now we can construct the approximate solutions which are valid at and behind the
front. According to the first scenario
F ′(ξ) = 2Rπ−1√ε +A tanh(e sinM−1ξ − eR) cosξ + [B sech2(e sinM−1ξ − eR) +C]

× cos2 ξ +B1 sin2ωk(τ −1) cosξH(sinξ − R). (51)
Here
B1 = [1− (A +C)2 + q0(A +C)](A +C − 0.5q0)

−1 ω2
k = 0.5[(A +C)q−1

0 − 0.5]

(52)
andH is the Heaviside function. According to the second scenario
F ′(ξ) = 2Rπ−1√ε +A tanh(e sinM−1ξ − eR) cosξ − B tanh2(e sinM−1ξ − eR) cos2 ξ

+B1 sin2ωk(ξ −1) cosξH(sinξ − R). (53)
HereB1 = [1− (A− B)2 + q0(A− B)](A− B − 0.5q0)

−1, ω2
k = 0.5[(A− B)q−1

0 − 0.5].
Solution (53) generalizes the results presented in [13]. However, in contrast with [13],

here we did not take into account the viscous effect on the cnoidal-type waves. The last waves,
as oscillations with a slowly varying mean value and an amplitude which is reduced to zero
before the end of each cycle, were observed in [22]. Strictly speaking, solutions (51)–(53) are
valid near the front whenR � 1 and conditions (30) hold.

2.5. Free waves

According to quadratically nonlinear equation (26) the free oscillations are not generated in
the system ifd = d1 = 0 [13, 24]. Here we consider the effect of the cubic nonlinearity on
the free oscillations. For this case we have from (21) and (26) that

−D1(F
′)2 = F ′′′ +D2F

′ +D4F
′′ +D3(F

′)3−D (54)
whereD1 = −β/2k∗a0,D2 = −2πN(ω1+ω∗)a3

0/k
∗Lω2,D3 = −(1.375β2a−3

0 +β1a
−1
0 )/k∗,

D4 = µ∗/k∗, andD = (d2 + d1 + dL)a3
0/k
∗L. Let the approximate solution of (54) be a sum

of travelling waves:
F ′(t ± xa−1

0 ) = A tanhe(sinM−1ξ) cosM−1ξ + [B sech2(e sinM−1ξ) +C] cos2M−1ξ

(55)
whereA,B,C ande are unknown constants. Expression (55), wherex = L, is substituted into
(54). Next, equating to zero nonlocalized terms, and terms containing sech2(e sinM−1ξ), or
sech4(e sinM−1ξ) or tanh(e sinM−1ξ)we obtain four equations. Then, following section 2.3,
we find equations forA, B, C ande:
−A2(D1 + 2.25CD3) = CD2 + 0.75C2D1 + 0.625C3D3− 2D − 2CM−2

e2BM−2 = D1(BC − A2) + eAM−1D4 +BD2 −D3(1.5CA
2 − 9BC2/8)− 2BM−2

BD1/3 +D3(B
2 + 3BC)/6= 0

A2D3 = 2(M−2 −D2 − CD1− 9D3C
2/8).

(56)
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Influences of nonlinearity, topography, dissipation and the initial displacement and stress.If
the amplitude of the wave is small so that the cubic term in (54) is negligible, then system
(56) yieldsB = 0 andA = −eD4M

−1D−1
1 . Thus, the cnoidal-type waves are defined by (55)

in the inviscid material ifD4 = 0,D 6= 0 and the cubic nonlinear effect is very small. Let
topographic and initial-state effects be very small so thatD = 0. ThenC = 0. Consequently,
the quadratically nonlinear free waves cannot exist in the initially flat and free layers of the
inviscid materials [13, 24].

It follows from the last analysis that in the initially flat and free layers of the inviscid
materials only the intensive nonlinear free waves may exist.

3. Forced and free waves (free boundaries)

We do not know of Faraday-type experiments with layers having free lateral boundaries.
However, it is known that vertical-induced seismic waves amplify in elongated natural
resonators. Sometimes these resonators may be considered as layers with free boundaries.
Thus, Nature realizes the Faraday-type experiment with layers having free lateral boundaries.

Let us consider here two examples of these experiments. First, a hill of length 2L is
considered. The undisturbed hill surface isy = h(x). The bed of the hill is aty = 0. Let the
hill geometry be symmetrical with respect to the verticalx = 0, andy = h(0) is the highest
point of the hill top. The slope of the hill top with respect to the bed of the hill is constant and
very small(hx = α � 1). Lateral surfaces of the hill are perpendicular to the bed and located
atx = ±L. We assume that the width of the hill is large enough so that our one-dimensional
model is valid.

Let the seismic-induced vertical acceleration may be approximated by a periodical law:
gy = δ cosωt whereδ � g0. The lateral surfaces of the hill are free. The hill is symmetrical,
therefore the boundary conditions may be presented so that

u = 0(x = 0) ux = us − ur = 0 (x = L). (57)

The next example is a slightly sloping continental shelf(hx = α � 1). It is assumed that a
coastal wall has a nonzero depth and thereu = 0 (x = 0). At x = L the shelf falls away rapidly
into the deep ocean andux = 0. It is known that an average length of a shelf is approximately
200 km and the average depth is about 200 m. Very large earthquakes only have a meaning for
the shelf when the free oscillations of the Earth are excited. The frequency of these oscillations
may be close to the fundamental frequency of the shelf. This frequency can have a period of
approximately an hour. Therefore, very long resonant water waves can be generated on the
shelf. One can see that this last problem is identical to the problem formulated for the hill.

Let us consider the condition atx = L. It follows from (57) and (21) that

j ′1− J ′1 + j ′2 − J ′2 + j ′3− J ′3− A∗[(J ′1)2 + (j ′1)
2] + A∗(s − r)(J ′1J ′′1 − j ′1j ′′1 )

+0.5a−2
0 (µJ ′′1 − µj ′′1 + kJ ′′′1 − kj ′′′1 )− 0.5La−3

0 (µJ ′′′1 +µj ′′′1 + kJ ′′′′1 + kj ′′′′1 )

−2A∗(J ′1J
′
2 + j ′1j

′
2) +A∗(r − s)(j ′′1 j ′2 − J ′1J ′′2 ) + 0.5a∗[j ′1(J

′
1)

2

−J ′1(j ′1)2 + 2j ′1j
′′
1J1− 2J ′1J

′′
1 j1] + (b∗ − 0.5A2

∗)

×
[
J ′1(j

′
1)

2 − j ′1(J ′1)2 + j ′′1

∫
(J ′1)

2 dr − J ′′1
∫
(j ′1)

2 ds

]
−(1.5c∗ − A2

∗)[(j
′
1)

3− (J ′1)3]

+2A2
∗L

2a−2
0 [j ′′′1 (j

′
1)

2 − J ′′′1 (J
′
1)

2 + 2j ′1(j
′′
1 )

2 − 2J ′1(J
′′
1 )

2]

−(2c∗ − A2
∗)La

−1
0 [j ′′1 (j

′
1)

2 + J ′′1 (J
′
1)

2] = 0. (58)
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We putJ3 = J3(r), j3 = j3(s), andd = d1 = 0. FunctionsJm(r) andjm(s) (herem = 1–3)
are expressed by the Taylor’s series, namely:

Jm(r) = F−m +A∗uF ′−m +A2
∗u

2F ′′−m/2 . . . jm(s) = F+m − A∗uF ′+m +A2
∗u

2F ′′+m/2 . . . .
(59)

It is assumed thatJm(t − xa−1
0 ) = F−m(t − xa−1

0 + La−1
0 ) = F−m and jm(t + xa−1

0 ) =
F+m(t + xa−1

0 − La−1
0 ) = F+m. In (59) we have

u = F−1 + F+1 + F−2 + F+2 +A∗(F−1 + F+1)(F
′
−1− F ′+1)− A∗L[(F ′−1)

2 + (F ′+1)
2]/2 . . . .

(60)

Using (59) and (60), and equating the terms of first, second and third order in (58) one can find
that

F ′−1 = F ′+1 = F ′, F ′−2 = −A∗(F ′−1)
2 − 2A∗F−1F

′′
−1 + 1

2µa
−2
0 (F ′′−1− a−1

0 LF ′′′−1)

+1
2ka
−2
0 (F ′′′−1− a−1

0 LF ′′′′−1)

F ′+2 = A∗(F ′+1)
2 + 2A∗F+1F

′′
+1 + 1

2µa
−2
0 (F ′′+1 + a−1

0 LF ′′′+1) + 1
2ka
−2
0 (F ′′′+1 + a−1

0 LF ′′′′+1 )

F ′−3 = −La−1
0 (2c∗ + 7A2

∗)F
′′
−1(F

′
−1)

2 F ′+3 = La−1
0 (2c∗ + 7A2

∗)F
′′
+1(F

′
+1)

2.

(61)

Here,F ′ is an unknown function which is defined by the boundary condition (57) atx = 0.
Let us consider the linear terms in this condition neglecting the dissipative effect. For this case

F(t ± x/a0) = l∗[(2− kω2a−2
0 ) cosωLa−1

0 − kLω3a−3
0 sinωLa−1

0 ]−1 cosω(t ± xa−1
0 ).

(62)

Herel∗ = −αδω−2. Now the elevation and the horizontal acceleration may be calculated:

η = h0a
−1
0 [F ′(r +La−1

0 )− F ′(s − La−1
0 )]

utt = F ′′(r +La−1
0 )− F ′′(s − La−1

0 ).
(63)

The resonant frequencies are defined from (62) as

�∗N = �N −�∗ (N = 1, 2, 3, . . .). (64)

Here�N = (N − 0.5)πa0L
−1 and�∗ = 0.5ka0π

3L−3(N − 0.5)3.

3.1. Nonlinear, trans-resonant, dispersive and dissipative effects

Let us obtain an equation forF which is valid at and near the resonant frequencies (64). From
(57) and (21) it follows that atx = 0 we have

J1 + j1 + J2 + j2 + J3 + j3 + 0.5a∗[j1(J
′
1)

2 + J1(j
′
1)

2]

+(b∗ − 0.5A2
∗)
[
J ′1

∫
(j ′1)

2 ds + j ′1

∫
(J ′1)

2 dr

]
= l∗ cosωt. (65)

Here, according to (59), (61) and sinceu = l∗ cosωt is very small, we haveJ1 = J1(r) ≈ F(r)
andj1 = j1(s) ≈ F(s). Generally speaking, one can seek the approximate harmonic solution
of (65). However, in this paper we are interested inunfamiliar waves. Near and at the
resonances (64) functionF is expanded in Taylor’s series atx = 0:

F(t − La−1
0 ) = F [t +La−1

0 − (2N − 1)πω−1 + 2ω−1a−1
0 L(ω1 +�∗)] = −F(t +La−1

0 )

−ω∗F ′(t +La−1
0 )− 0.5ω2

∗F
′′(t +La−1

0 )− ω3
∗F
′′′(t +La−1

0 )/6 . . . (66)

It is assumed here thatω∗ = 2ω−1a−1
0 L(ω1+�∗),F [t+La−1

0 −(2N−1)πω−1] = −F(t+La−1
0 )

andω = �∗N − ω1. Now the boundary condition (65) may be reduced, after using (59)–(61)
and (66) to the basic equation:

−ω∗F ′ − µ∗a−3
0 LF ′′ − k∗a−3

0 LF ′′′ + γ (F ′)3 = l∗ cosωt. (67)
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Hereµ∗ = µ + 0.5L−1ω2
∗a

3
0, k∗ = k + L−1ω3

∗a
3
0/6, γ = −0.67La−1

0 (2c∗ + 7A2
∗) and

F = F(t + La−1
0 ). It should be emphasized that the dissipative and dispersive terms in

(67) depend onω. We now examine the nonlinear, trans-resonance, dissipative and dispersive
effects on the solution of equation (67).

Nonlinear effect. If ω∗ = k∗ = µ∗ = 0 we have

F ′[t ± (x − L− 0.25βua−2
0 )a−1

0 ] = (l∗γ−1 cosωξ∗)1/3. (68)

Hereξ∗ = t ± (x−L−0.25βua−2
0 )a−1

0 ± (N −0.5)π�−1
N . Thus, due to the nonlinear effect,

the resonant oscillations have finite amplitude.

Trans-resonant effect, nondispersive medium.We rewrite equation (67) so that

Y 3 + (3R/22/3)Y + cosωt = 0 (69)

whereY = (−l−1
∗ γ )

1/3F ′ and hereR = 22/3ω∗(−l−1
∗ γ )

−1/3/3. In (69)R is a trans-resonant
parameter. Solutions of (69) are defined by a value ofR. If R > 0 there is the next real
solution of (69):

Y = −2R1 sinh(ϕ∗/3) (70)

whereR1 = 2−1/3(sign cosωt)|R|0.5 and sinhϕ∗ = (sign cosωt)|R|−1.5 cosωt andφ∗ =
cos−1 |R|. If −16 R < 0 there is no continuous single-valued solution, and it is necessary to
accept a solution with discontinuities. Following [25] we find that

Y =


−2R1 cosh(ϕ1/3) if 0 < ωt 6 φ∗ or π − φ∗ < ωt 6 π + φ∗

or 2π − φ∗ < ωt 6 2π

−2R1 cos(ϕ2/3) if φ∗ < ωt 6 π/2 or π + φ∗ < ωt 6 2π/3

−2R1 cos(ϕ2/3 + 2π/3) if π/2< ωt < π − φ∗ or 3π/2< ωt < 2π − φ∗.
(71)

Here coshϕ1 = (sign cosωt)|R|−1.5 cosωt , cosϕ2 = (sign cosωt)|R|−1.5 cosωt . If R < −1
there are three continuous real solutions of (69):

Y = −2R1 cos[φ2/3 + 2(i∗ − 1)π/3] i∗ = 1, 2, 3. (72)

It should be emphasized that there is also the acoustics solution. Linear (62), and nonlinear
(70)–(72) solutions may describe different scenarios of the trans-resonant evolution of waves.
It is important that the elevation is not symmetrical with respect toR = 0. In contrast to case
R > 0, the surface discontinuities may be generated if−1< R < 0 when

ωt = nπ − φ∗ n = 1, 2, 3, . . . . (73)

These discontinuities arise because of the simplification of equation (67).

Effect of weak dispersion.Let us return to equation (67) and take into account the dispersive
effect for−1 < R < 0(ω∗ < 0). For a qualitative analysis it is assumed that an influence
of the dispersion is accumulated at and near (73) and|R| � 1(cosωt ≈ 0). For this case
equation (67) yields

K∗(F ′′)2 = (F ′)4/16− 2�(F ′)2 +C∗ (74)

whereK∗ = Lk∗γ−1a−3
0 /8, � = ω∗γ−1/16 andC∗ is an integration constant. Case

C∗ = 16�2 was considered in [12]. LetC∗ = 0; then equation (74) is approximately satisfied
if

F ′ =
√

32� sech(ω−1
√
−2�/K∗ cosωt) sinωt. (75)
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It is assumed thatω−1√−2�/K∗ � 1. Using the expressions forY and (75) we construct
the expression forF ′ which is valid if the influence of the dispersion on equation (67) is small
and localizes at and near (73):

F ′ =
√

32�8∗(t +La−1
0 ) sinωt + (−l∗γ−1)−1/3Y [1−82

∗(t +La−1
0 )]. (76)

Here8∗(t +La−1
0 ) = sech(ω−1√−2�/K∗ cosωt). Thus a smooth solution of equation (67)

is constructed which is valid if−1< R < 0. Solution (76) transforms toF ′ = (−l∗γ−1)−1/3Y

if | cosωt | increases from zero.
Generally speaking, the first term in (76) may be very small. Now, using (76) and (63) we

can write expressions for the resonant travelling waves. For example, for the travelling waves
of the horizontal acceleration we have

F ′′[t ± (x − L− 0.25βua−2
0 )a−1

0 ] = −8�
√
−K−1∗ sech2(ω−1

√
−2�K−1∗ cosωξ∗)

× sinh(ω−1
√
−2�K−1∗ cosωξ∗) sin2ωξ∗ + (−l∗γ−1)−1/3Yt (ξ∗)

×[1− sinh2(ω−1
√
−2�K−1∗ cosωξ∗)]. (77)

The first term in (77) takes into account the dispersive effect which accumulates near lines
whereωξ∗ = πn− φ∗.

3.2. Effect of strong dispersion and the localized solution

In this case we write equation (67) so that

F ′′′ +D2F
′ +D4F

′′ +D3(F
′)3− l∗ cosωt = 0 (78)

whereD2 = ω∗a3
0/k∗L,D4 = µ∗k−1

∗ ,D3 = −γ a3
0/k∗L andl∗ = −αδa3

0/k∗Lω
2. We assume

the solution of (78) in the form

F ′[t ± (x − L− 0.25βua−2
0 )a−1

0 ] = [B sech2(e sinM−1ξ∗ − eR) +C] cosM−1ξ∗ (79)

whereB, C, e are unknown constants andx = 0. We shall assume that cosM−1ξ∗ = cosξ∗
in (79). Expression (79) is substituted into (78). Next, equating to zero nonlocalized terms,
and terms containing sech2(e sinM−1τ − eR) or sech4(e sinM−1τ − eR) we obtain three
equations. Then, following section 2.3, we can find the following algebraic equations forB,
C ande:

D2C − C + 0.5D3C
3− l∗ = 0

Be2M−2 +B −D2B − 1.5D3BC
2 = 0

3C +B = 0.

Thus|B| � C and localized waves are defined by (79) ife2� 1. Recall thatM−1 = 1, 3, 5, . . .
according to section 2.3.

Free oscillations (trapped seismic waves).If D2 = l∗ = 0 thenC2 = 2D−1
3 , e2 = 2M2,

andB = −3C in (79). One can see that|e| � 1 only if M = 3, 5, 7, . . . . Thus subharmonic
(having low frequency) localized free waves may be excited in elongated topographies during
earthquakes due to a sole shake according to the presented theory.

3.3. Earthquake-induced oscillations of the Tarzana hill as an example of the Faraday-type
experiment in Nature

The Northridge 1994 Southern California earthquake caused extremely violent shaking at
a site in Tarzana, California, located about 6 km south and 18.7 km about the mainshock
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hypocentre. The peak horizontal acceleration(1.78g0) was about a factor of ten higher than
was observed at most other sites at an equal epicentral distance, and it was considerably higher
than expected from empirical acceleration curves and numerical simulations [26–28]. In [28]
it was emphasized that there was not an adequate explanation for the above violent shaking or
why the 3.2 Hz resonance is strongest within 50 m of the hill top.

The Tarzana hill is 500 m long, 130 m wide, and reaches a maximum height of 20 m
above the surrounding terrain. The shear-wave velocity under the hill is 369 m s−1. We
assumeas = 249 m s−1 in the hill because of a strong impedance contrast between the hill
and the bed [27].

Analytical analysis. We shall consider this elongated hill as a layer with slightly varying
thickness and free ends. As a result, a behaviour of the hill is described by the theory of this
section. According to (62) and (63) a peak of the surface motion is excited near the highest
point (x = 0) of the hill at the resonance. This conclusion qualitatively agrees with the data
which were recorded for the Tarzana hill [26–28]. The violent ground motion affected the
top and the centre of the hill. Let us calculate the first resonant frequency of the hill using
formula (64) which takes into account both the height (20 m) and the length of the hill. Many
important characteristics can be understood through polarization analyses. According to [27]
the largest (L = 250 m) and smallest (L = 100 m) dimensions of the hill are assumed. The
dispersive effect we neglect (k = 0 in (64)). Then, forL = 250 m we have�1 = 1.77. This
value correlates with frequency peak presented in figure 6 from [27]. ForL = 100 m we have
�1 = 4.42. The latter correlates with main frequency peak (3.26 Hz) presented in figure 6
from [27]. It is easy to find from (64) the dimension (L = 139 m) of the hill which corresponds
to the main frequency peak. For this dimension (the dimension depends on the direction of
measuring the hill) we have strong amplification which orients approximately perpendicular
to the long axis of the hill. This result agrees with the observations [26–28]. The fundamental
frequencies of the hill, corresponding to differentL (100 < L < 250 m), range from 1.8
to 4.5 Hz. Thus one can see that formula (64) approximately describes some results of the
calculations [26] and the observations [26–28].

In figures 3–5 nonlinear waves calculated forL = 139 m are presented. The length
in figures 3–5 is related toL. The left-hand half of the hill is considered in figure 3 where
a travelling wave of the horizontal acceleration is presented. We assumedR = 0.3 and
l∗ = 0.00 002 m. A maximum amplitude of the acceleration peaks is at the centre(x = 0)
of the hill, where peaks follow after craters and vice versa. This maximum reduces and the
profile of the oscillations varies whenx increases. At approximatelyx = L/2, oscillations
are generated reminiscent of shock waves having two peaks. Thus, according to the theory,
the largest resonant amplification of the horizontal accelerations takes place at the centre of
the hill. This amplification may be very local.

Trans-resonant evolution of the surface waves in the Tarzana hill is shown in figure 4.
We note that the curves in figure 4 qualitatively agree with experimental oscillograms of
earthquake centrifuge modelling [29]. The sand was excited in the horizontal direction in a
container for earthquake tests. The shaking was transient but its frequency (≈1.9 Hz) was
close to the fundamental frequency (≈2.6 Hz) of the container. A shear deformation of the
sand was maximum at the free surface and zero on the bottom. As a result, the upperlying layer
and bottom layer of the sand had slightly different fundamental frequencies andR (R < 0).
Travelling oscillons were excited during the experiments near the bottom while shock-like
waves were excited near the free surface (see figures 14, 16, 18 and 21 from [29]). This effect
may be explained by the influence ofR according to figure 4. We simulated the Tarzana hill
behaviour in pointx = 0.25L for different negativeR andl∗ = 0.5× 10−5 m.
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Figure 3. Travelling oscillon calculated according to (70) and (63) forN = 1.

The number of oscillons travelling up and down along the hill depends on the exciting
frequency. These waves can form different patterns. Some of them, calculated according to
(70) and (63) forl∗ = 0.000 02 m, are shown in figure 5 (R = 0.05 andN = 3). One can
see that on the surface of the Tarzana hill the standing oscillons are formed as a result of a
collision between the two travelling oscillons. The generation of these oscillons is similar to
the generation of standing waves in linear acoustics but here we have the nonlinear effect and
the standing oscillons may be very strongly located.

Since the earthquake-induced vertical acceleration of the hill was 1.15g0 [28], a tension
zone could periodically generate near the base. There, a small gap could periodically generate.
As a result of a periodical annihilation of this gap (periodical collisions of the hill with the bed)
the strongly nonlinear waves had to be excited in the Tarzana hill. This amplification recalls
an effect for a vertical water column which was experimentally studied by Natanzon [30].

Experimental and theoretical analysis of strongly nonlinear waves.The oscillations were
excited by a piston at the bottom of the tube. The pressure on the free surface of the water
column was equal to atmospheric pressure. The velocity of sound in the tube was 750 m s−1.
The radius was 12 cm; the length of the water column was varied from 4 to 7.5 m. Therefore,
the fundamental frequency of the water column approximately changes from 300 to 160 Hz. In
figures 6 and 7 oscillograms of the water pressure measured near the piston are presented. The
sinusoidal curves show the piston position. During the experiments the excited frequency was
increased slowly from 5 to 18 Hz and then was slowly reduced to 5 Hz. One can see that in the
frequency range extending from 7.7 to 17 Hz there are large variations of the pressure waves.
Shock-like waves were excited near the piston instead of the sinusoidal acoustic waves for all
the above water columns when the piston acceleration exceededg0. If an excited amplitude of
the piston was 0.002 m, then the shock-like waves had a frequency equal to the frequency of the
piston (figure 6). When the amplitude of the excitation exceeded a critical value, subharmonic
oscillations were generated in the tube (figure 7). It is surprising that the above amplification
took place at all. Indeed, the excited frequencies were lower than the fundamental frequencies
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Figure 4. Trans-resonant curves of the acceleration calculated according to (77),

F ′′[t ± (x − L − 0.25βua−2
0 )a−1

0 ] = (−l∗γ−1)−1/3Yt (ξ∗) − 8�
√
−K−1∗ sinh(ω−1√

−2�K−1∗ cosωξ∗) sin2ωξ∗ sech2(ω−1
√
−2�K−1∗ cosωξ∗) and (18) near the Tarzana hill top

(x = L/4) for R = −2 (——),R = −1.3 (∗ ∗ ∗∗) andR = −0.7 (- - - -).

of the tubes by about ten times. Thus it was not the traditional resonance. The strong hysteretic
effect is demonstrated in figure 6.

The results of numerical and analytical simulations of the above experiments were
published [30, 31]. The strongly nonlinear state equation for the bubbly liquid, reminiscent of
the state equation (8), was used in [31]. It was found that the amplification of the water wave
was connected with the tension (cavitation) zone generated near the piston. We suggest that
the same effect took place near the base of the Tarzana hill. Of course, vertical waves were
excited in the tube while equation (13) was derived for horizontal waves. However, vertical
waves in the Tarzana hill are also described by equation (13) and the boundary problem for
these waves yields equation (67) [12]. Therefore, the Natanzon experiments describe both
vertical and horizontal oscillations of the Tarzana hill. On the other hand, a very wide spectra
of frequencies was generated because of the hill–base collisions [26].

In figures 8 and 9 the trans-resonant evolution of wavesux in the top of the Tarzana hill
is presented. The excited amplitude was 0.000 02 m,L = 250 m andas = 249 m s−1. The
excited frequency increases (figure 8) or decreases (figure 9) through resonant frequency�1.
The dashed curves in figure 8 were calculated according to acoustic solution (62). The other
curves were calculated according to the nonlinear expressions (70)–(72). We emphasize that
curvesp andη are reminiscent of the curves in figures 8 and 9. One can see that the waves in
figures 8 and 9 are an analogue of the strongly nonlinear pressure waves excited in the vertical
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Figure 5. Localized oscillating excitations (standing oscillons) on the vibrated surface which are
organized due to collisions of the travelling oscillons.

Figure 6. Hysteretic dynamics of strongly nonlinear oscillations of the water column (the exciting
amplitude is 0.002 m andL = 7 m).

tube by the piston (figures 6 and 7). According to the theory and the calculations, the Tarzana
hill demonstrates strongly hysteretic nonlinear behaviour during earthquakes.

Thus strongly nonlinear earthquake-induced seismic waves may be generated because of
the topographic effect in natural resonators. On the other hand, these waves may be generated
in the Faraday experiments with layers having free ends.

4. Unfamiliar parametric vertical-induced surface waves

Above we considered the case whereg0 � gy . Let us now study cases wheng0 6 |gy | or
g0 � |gy |. Attention will be focused on limit cases when voidageφ0 = 0 (water waves) or
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Figure 7. Subharmonic oscillations of the water
column (the exciting amplitude is 0.004 m andL =
6 m).

Figure 8. Hysteretic trans-resonant evolution of the Tarzana hill oscillations when the excited
frequency increases.

φ0αs = 1 (granular waves). An equation for these cases follows from (13):

utt − a2
0uxx = −ghx − 3a2

0uxuxx + 6a2
0u

2
xuxx +µutxx + 1

3h
2
0a

2
0uxxxx (80)

wherea2
0 = gh0. Equation (80) may be considered as a modification of Airy’s equation [14] for

nonlinear water waves. Thus we have here the perturbed nonlinear equation with the variable
coefficients for dissipative–dispersive systems. We solve this equation following [24]. The
free surface elevationη is defined so that

η = h(u2
x − ux). (81)
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Figure 9. Hysteretic trans-resonant evolution of the Tarzana hill oscillations when the excited
frequency decreases.

We shall seek a periodical solution of (80) that satisfies the next boundary conditions:

u = 0 at x = 0 and x = L. (82)

Analytical solutions are presented below, which explicitly demonstrate the influence of the
amplitude of acceleration, and nonlinear, topographic, parametric, dispersive and dissipative
effects on vertically induced surface water and granular waves.

4.1. Perturbation method

Equation (80) is rewritten, introducing the variables:

r = a(t)− x s = a(t) + x (83)

wherea(t) is an unknown function which will be determined later. One can find that

ux = us − ur ut = at (us + ur) uxx = urr − 2urs + uss
utt = (at )2(urr + 2urs + uss) + att (ur + us) uxxxx = urrrr − 2urrss + ussss
utxx = at (urrr − urss − urrs + usss).

Herea = a(t) and the subscriptsr ands refer to partial derivatives with respect tor ands,
respectively. Leta2

t = a2
0. Then, neglecting terms of the fourth order, we rewrite equation

(80) so that

4a2
0urs = −g(hs − hr) + 3a2

0(1 + 2ur − 2us)(ur − us)(urr − 2urs + uss)

+µat(urrr − urss − urrs + usss) + h2
0a

2
0(urrrr − 2urrss + ussss)/3

−att (us + ur). (84)
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The solution of (84) is presented as the sumu = u1+u2+u3, whereu1� u2� u3. Substituting
this sum into (84) and equating terms of the same order, one can obtain the following linear
differential equations:

u1,rs + 0.25atta
−2
0 (us + ur) = 0 (85)

4u2,rs = −h−1
0 (hs − hr)− 3(u1,s − u1,r )(u1,rr − 2u1,rs + u1,ss)

+µa−1
t (u1,rrr − u1,rss − u1,rrs + usss) + h2

0(u1,rrrr − 2u1,rrss + u1,ssss)/3 (86)

4u3,rs = −3(u2,s − u2,r )(u1,rr − 2u1,rs + u1,ss)− 3(u1,s − u1,r )(u2,rr − 2u2,rs + u2,ss)

+6(u1,r − u1,s)
2(u1,rr − 2u1,rs + u1,ss). (87)

Let the approximate solution of equation (85) be

u1 = J (r)− J (s). (88)

In this case equation (85) yields−J ′(s) + J ′(r) = 0. Let us assume that

J ′(a +L) = J ′(a − L). (89)

ThusJ ′ is the periodical function. One can see that equation (85) is satisfied approximately by
(88) in case (89) near the boundaries. On the other hand, solution (88) is valid ifatta

−2 ≈ 0.
Solution (88) is reminiscent of the d’Alembert-type solution (19), but here the velocity of
wavesJ (a ± t) is not constant and depends ongy . In particular, according to solution (88),
standing or spatially oscillating or one-hand side travelling waves may be in vertical-induced
layers [24]. Now we shall correct solution (88) taking into accountu2 andu3. The wave-type
solution of (86) is given by

u2 = J2(r) + j2(s)− 3
8{r[J ′(s)]2 − s[J ′(r)]2 − 2J (s)J ′(r) + 2J ′(s)J (r)}

−0.25
∫ ∫
{h−1

0 (hs − hr)− µa−1
t [J ′′(r − J ′′(s)]} dr ds

+ 1
12h

2
0[sJ ′′′(r)− rJ ′′′(s)] + xd + d1. (90)

The prime denotes here the differentiation with respect to the appropriate variable (83). Let us
assume that coefficientµ in (13) and (90) is a function of the vertical acceleration of the layer
and

η∗ = η∗at (91)

whereη∗ is constant. Generally speaking, the expression (90) can contain secular terms. The
secular terms will be eliminated if

J2(r) = −3r(J ′)2/8− h2
0rJ
′′′/12− η∗rJ ′′/4 +αh−1

0 r2/8 +92(r)

j2(s) = 3s(j ′)2/8− h2
0sj
′′′/12− η∗sj ′′/4 +αh−1

0 s2/8 +ψ2(s).

HereJ = J (r), j = −J (s). For simplicity we will consider here layers with the thickness
varying according to the linear law (hx = α, whereα is constant). As a result we have the
next expression for solution (90) which is valid near the boundaries or if (89) holds:

u2 = 92(r) +ψ2(s) + 0.375(s − r)[(J ′)2 + (j ′)2] − 0.75(jJ ′ − j ′J )
+(s − r)[h2

0(J
′′′ − j ′′′) + 3η∗(J ′′ − j ′′) + 6d]/12 + 0.125αh−1

0 (s − r)2 + d1.

(92)

We shall not take into account the influence ofd andd1 on the third-order values.
Using the expressions foru1 (88) andu2 (92) one can rewrite equation (87) so that

u3,rs = 9{0.5(j2)′J ′′′ + 0.5(J 2)′j ′′′ − Jj ′j ′′′ − jJ ′J ′′′ − 3.5(j ′)2J ′′ − 3.5(J ′)2j ′′

+3.5[(J ′)2]′j ′ + 3.5[(j ′)2]′J ′ − 5[(j ′)3]/6− 5[(J ′)3]′/6− JJ ′′j ′′ − jj ′′J ′′
−j (J ′′)2 − J (j ′′)2}/16− 9(s − r){j ′[(J ′)2]′′ − J ′[(j ′)2]′′ + J ′′[(j ′)2]′
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−j ′′[(J ′)2]′ + 2[(j ′)3]′′/3− 2[(J ′)3]′′/3}/32 + 1.5[J ′′(j ′)2 − 2J ′j ′J ′′

+J ′′(J ′)2 + j ′′(j ′)2 − 2J ′j ′j ′′ + j ′′(J ′)2] + 0.75[(9 ′′2 +ψ ′′2 )(j
′ − J ′)

−(9 ′2 − ψ ′2)(J ′′ + j ′′)].
Here92 = 92(r), ψ2 = ψ2(s). Now, after some algebra, one can find
u3 = J3(r) + j3(s) + 9(J ′′j2 + j ′′J 2)/32− 9j ′J ′(J + j)/16− 3[j (J ′)2 + J (j ′)2]/32

+3

(
j ′
∫
(J ′)2 dr + J ′

∫
(j ′)2 ds

)
+ 7[s(J ′)3 + r(j ′)3]/32

+9(r − s)[2jJ ′J ′′ − 2Jj ′j ′′ + J ′(j ′)2 − j ′(J ′)2]/32

+9(s2 − 2rs)J ′′(J ′)2/32 + 9(r2 − 2rs)j ′′(j ′)2/32

+0.75
∫ ∫

[(9 ′′2 +ψ ′′2 )(j
′ − J ′)− (9 ′2 − ψ ′2)(J ′′ + j ′′) dr ds. (93)

We used in (93) that∫ ∫
(s − r)[(j ′)3]′′ dr ds = 1.5(sr − 0.5r2)j ′[(j ′)2]′ − r(j ′)3.

The secular terms are eliminated in (93) if
J3(r) = 93(r)− 7r(J ′)3/32 + 9r2J ′′(J ′)2/32

j3(s) = ψ3(s)− 7s(j ′)3/32 + 9s2j ′′(j ′)2/32.
As a result we have the next expression for the displacement which is valid near the fixed
boundaries:
u = J + j +92(r) +ψ2(s) + 0.75x(J ′)2 + 0.75x(j ′)2 − 0.75(jJ ′ − j ′J )

+x[h2
0(J
′′′ − j ′′′) + 3η∗(J ′′ − j ′′)]/6 + 0.5αh−1

0 x2 + xd + d1 +93(r) +ψ3(s)

+9(J ′′j2 + j ′′J 2)/32− 9j ′J ′(J + j)/16− 3[j (J ′)2 + J (j ′)2]/32

+3

[
j ′
∫
(J ′)2 dr + J ′

∫
(j ′)2 ds

]
+ 7x[(J ′)3− (j ′)3]/16

−9x[2jJ ′J ′′ − 2Jj ′j ′′ + J ′(j ′)2 − j ′(J ′)2]/16 + 9x2J ′′(J ′)2/8

+9x2j ′′(j ′)2/8 + 0.75
∫ ∫

[(9 ′′2 +ψ ′′2 )(j
′ − J ′)− (9 ′2 − ψ ′2)(J ′′ + j ′′)] dr ds.

(94)
The boundary condition (82) atx = 0 is satisfied by (94) if we assume that

92(r) = ψ2(s) = −0.5d1 93(r) = ψ3(s) = 0. (95)

4.2. Viscous, nonlinear and topographic effects

Because of (89) expressions (94), (95) and the boundary condition (82) atx = L yield the
next equation:
−L(J ′)3/4 + 2.25LJJ ′J ′′ + 1.5L(J ′)2 + h2

0LJ
′′′/3 +η∗LJ ′′ + 0.5αh−1

0 L2 +Ld = 0 (96)
whereJ ′ = J ′(a − L). Let J be the fast-varying function and|J | � |J ′|. For this case the
following coefficients are introduced:
D1 = −4.5h−2

0 D3 = −3/4h2
0 D4 = 3η∗h−2

0 D = −(1.5αLh−1
0 + 3d)h−2

0 .

(97)
As a result, equation (96) transforms into equation (54). Following section 2.5 we write the
following expression forJ ′:
J ′(a ± x) = A tanhe(sinM−1ζ − R) cosM−1ζ

+[B sech2(e sinM−1ζ − R) +C] cos2M−1ζ (98)
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where ζ = πL−1(a ± x + c±), A, B, C, e are unknown constants andR is the trans-
resonant parameter. Valuesc± andM will be determined later. Let us assume that|e| � 1.
Thus only localized waves are considered. These waves are localized near lines where
sinπL−1M−1(a ± x + c±) ≈ R. In this caseA, B, C, e are defined by system (56) where
D2 = 0 andM−2 is replaced byπ2L−2M−2.

Influences of quadratic nonlinearity, dissipation, topography, and the initial state.If the
amplitude of the wave is small so that the cubic term in (96) is negligible, then system (96)
yieldsB = 0 and

A2 = −0.5C2 +DD−1
1 e = AD1LM/πD4 C = π2L−2M−2D−1

1 . (99)

One can see from (99) that effects of the dissipation andD may be very important.
Discontinuous oscillations may generate in the inviscid system(D4 = 0). Due to the

weak dissipation the continuous shock-like parametric surface waves may be in layers. These
waves were observed recently in granular layers [32]. At the same time, no oscillations are
possible in the initially flat and free layers(D = 0) according to system (99). This result
agrees with the conclusions of section 2.5.

4.3. Simulation of observed parametric water and granular waves

Generally speaking, the presented theory is valid for any excitation whena0 =
√
g0h0 + gyh0

is real [24]. However, in order to illustrate the theory we shall consider a one-frequency
periodical oscillation of the bed according to sinusoidal law. If the amplitude of the exciting
acceleration of the bed is small enough then we can suggest that in (13)

gy = δ cosωt. (100)

This case for water waves andδ = g0 was considered in [24]. Thus for water waves
a2
t = a2

0 = g0h0(1 +gyg
−1
0 ) = g0h0(1 + δg−1

0 cosωt), and

a = (g0h0)
0.5
∫
(1 + δg−1

0 cosωt)0.5 dt = (8g0h0ω
−2)0.5 sinωt/2. (101)

If δ < g0, then according to (101)

a = a(t) ≈
√
h0g0(t + 1

2δω
−1g−1

0 sinωt − 1
16δ

2g−2
0 t − 1

32δ
2ω−1g−2

0 sin 2ωt . . .).

One can see that the convergence of this series depends onω. If ω is small then the series
converges slowly. As a result, many harmonics may be generated in the system and the motion
of the waves may be very complex. Apparently, the system moves to chaos whenω reduces
while δ is close tog0.

In contrast with the water waves, the granular waves are excited in experiments if|gy | > g0.
If δ > 2g0 then the gas volume increases above some critical level and the thin granular layer
loses the compact state. We shall simulate the surface waves for this case, suggesting that the
vertical acceleration of the layer is a fast-varying function during the collision, contact and
separation phase. Let a periodical excitation acting on the layer be

gy = δ∗ cosn m−1ωt (102)

whereδ∗ is an unknown constant, and heren = 2, 4, 6, 8, . . . andm = 1, 2, 3, . . . . The
constantsδ∗, n andmmay be defined from experiments [33]. In (102), degreen is defined by
the intensity of the excitation and the contact time. Coefficientδ∗ is defined by a velocity of
a layer–bed collision. Coefficientm is defined by the flying time. Of course, the constants in
(102) are defined by the excitation; however, we emphasize that (102) is not the acceleration
of the bed. Expression (102) defines the acceleration of the layer, which is quite different from



Topographic effect in a Faraday experiment 6991

the sinusoidal acceleration of the bed. In particular, (102) defines subharmonic oscillations
excited by the sinusoidal acceleration of the bed ifm = 2, 3, . . . . Let δ∗ be large enough so
that we can neglect by the effect of the acceleration of gravity|gy | � g0. Due to the above
assumptions, we may use equation (13) for the study of the nonlinear behaviour of the thin
fluidized granular layers if therea2

0 = δ∗h0 cosn m−1ωt . Thusa = (δ∗h0)
0.5
∫

cosn/2m−1ωt dt
for the granular waves.

Solution (98) describes the rich variety of wave processes in water and granular layers.
Therefore, we must extract questions of our interest for calculations. Let us focus our attention
on wave patterns observed recently in water [34] and granular layers [6, 8, 32, 33, 35]. These
patterns were simulated successfully with the help of numerical methods (see, for example,
[8, 9, 33–35]). Here we use the analytical solutions.

Results of calculations of the wave patterns are given in figures 10–12, where the
dimensionless coordinate(x/m) is used. The boundary friction (91) may be very important
for the waves excited in these experiments. However, we do not know the friction parameters.
Therefore, we will qualitatively simulate experimental results assuming, following [24], that
A = 0, andB = 1.8,C = −0.9 e ≈ 1.423π−1h−1

0 L in (98) (see also [36]).

Analysis of water wave experiments [34].The rectangular tank was vertically vibrated in
[34]. The tank was 0.2 m long and 0.025 m wide. The water depthh0 was 0.02 m. Thus,
the boundary friction may be very important for the waves excited in this experiment. We
assumed that the bottom friction effect reduces the amplitude of water waves. Therefore, so
as to roughly take this effect into account, we assume thath0 = 0.0066 m in the calculations.
Then we suggest that some wave patterns in the experiments were formed by the wave

ux = −fx(a + x) = −{1.8 sech2[1.423πh−1
0 L sinπL−1M−1(a + x + c+)] − 0.9}

× cos2 πL−1M−1(a + x + c+). (103)

Results of the calculations forδ = g0, differentM−1 andc± are presented in figure 10. We
used (81), (101) and assumed thatω = 63 Hz. These results correspond to the waves presented
in figures 2(a), 1(a) and 3(a) from [34].

The double solitons (see figure 10(a)) were calculated according to (88) and (103) where
M−1 = 2 andc+ = 0.75L. These solutions are also presented in figure 2(a) of [34]. The
double solitons, shown in figure 1(a) of [34], oscillate symmetrically with respect to the centre
of the tank. We obtained these waves with the help of (88) and (98), assumingM−1 = 2,
c− = −1.25L, andc+ = 0.75L. Figure 10(c) shows interactions and motions of the four
solitons. We calculated these solitons assumingM−1 = 4, c− = −7L/8, andc+ = 5L/8.
Thus figure 10 shows, qualitatively, interactions and motions of the solitons presented in [34].

Thus, usingM−1 and constantsc±, we simulated qualitatively the experimental results
for the water waves.

Simulation of granular-wave experiments [8, 33, 34].Theoretical results calculated for
h0/L = 0.05,L = 1 m,m = 2, c± = L/4, δ∗ = 2.5g0 anda = (δ∗h0)

0.5mω−1(sinm−1ωt −
0.333 sin3m−1ωt), according to (102), (98), (88) and (81), are illustrated by figures 11 and 12.
Figure 11 shows oscillons calculated forω = 25 Hz. Figure 12 presents wave patterns
calculated for differentω: ω = 15 Hz (a), ω = 7 Hz (b), ω = 5 Hz (c).

One can see in figure 11 the granular waves spatially oscillating with a small amplitude.
The oscillons are a result of the focusing of these waves. The oscillons can form chains (see
figures 11(a) and 12(a)). Perhaps these chains correspond to the so-called oscillon ‘molecules’
presented in figures 3(c) and (d) of [8]. If the excited frequency reduces then the chains
begin to interact. This interaction and an influence of the boundaries give the hexagon-like
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Figure 10. Stripe-like patterns on water surface.

pattern (figure 12(b)). Hexagonal patterns have been observed in different experiments (see,
for example, [8, 35]). The rectangular-like patterns are shown in figure 12(c). Calculations
showed that the square-, hexagon- and rectangular-like patterns may be forced for different
n, layers and excitations. Indeed, square patterns as well as hexagonal pattern were often
observed in experiments. These patterns can form the different nets in thex–t plane. Striped
patterns are described with the help of (103). Perhaps the stripes observed in [33, 35] are a
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Figure 10. (Continued)

result of the excitation of one-hand side travelling oscillating waves (103).
The other wave patterns described by solution (98) are discussed in [24, 36].

4.4. Standing and arch parametric waves in deep granular beds

Spatially slowly varying waves were observed in [37, 38]. Let us assume that the generation
of these waves is defined by an initial topography of the layer. It is suggested thathx =∑

i Hi sin 2πix/L andu = ∑i Ui(t) sin 2πixL−1 in (80). Then, following [24], we obtain
from (80) the next set of approximate independent equations:

U ′′i + 4µπ2i2L−2U ′i + gHi + 4h(g0 + gy)π
2i2L−2(1− 4h2π2i2L−2/3)Ui

= − 24h(g0 + gy)π
4i4L−4U3

i . (104)

We assume that

Ui = Ai cosωt/2 +Ci. (105)

Small-amplitude surface waves [38].If the flying time is much smaller than the excitation
period, we can suggest thatn = 1 andm = 1 in (102), and thereforegy = δ∗ cosωt . Using
the last expression and (104) we obtain the following equations:

C3
i = Ci [h2/4.5− i−2π−2L2/6− 0.75(2 + δ∗g−1

0 )A2
i ] −Hih−1i−4π−4L4/24 (106)

Ai [−0.25ω2 + 4hi2π2L−2(g0 + 0.5δ∗)(1− 4h2i2π2L−2/3)]

= − 24Aihi
4π4L−4[(0.75g0 + 0.5δ∗)A2

i + 3(g0 + 0.5δ∗)C2
i ]. (107)

For a limit caseHi ≈ Ci ≈ 0 we haveA2
i = h−1i−4π−4L4(18g0 + 12δ∗)−1[0.25ω2 −

4hi2π2L−2(g0 + 0.5δ∗)(1 − 4h2i2π2L−2/3)]. According to this case the subharmonic
parametric standing waves

u =
∑
i

Ai cos(ωt/2) sin 2πixL−1 (108)
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Figure 11. Stripe-like pattern is formed by oscillons (a) and dynamics of oscillon (b).

may be generated in the layer. These slowly varying waves exist if the excitation is intensive
enough so that the cubic term in (13) begins to be important. This result agrees qualitatively
with experiments. Indeed, the slowly varying granular waves were observed when the excited
acceleration was increased above 2.2g0 [38].

Arch waves. If the excitation is increased then the flying and contact times of the deep bed
may be comparable. In this case,gy = δ∗ cos2ωt (102) and

Ci± = ±(h2/4.5− i−2π−2L2/6− 1.5A2
i )

0.5

A2
i = −h−1i−4π−4L4(90g0 + 43.5δ∗)−1[0.25ω2 + 8hi2π2L−2(g0 + 0.5δ∗)
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Figure 12. Chain (a), hexagonal (b) and square (c) patterns generated by analytic solution (98) in
thex–t plane.

×(1− 4h2i2π2L−2/3)].

We assumed thatHi = 0 and amplitudeAi is very small or imaginary. Then constantsCi±
are real ifh2 > 0.75i−2π−2L2. In this case, counterintuitive standing arch-like waves are
generated:

u± = ±
∑
i

(2h2/9− 8i−2π−2L2/3)0.5 sin 2πixL−1. (109)
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Figure 12. (Continued)

The ‘arching’ phenomenon was observed clearly [37, 38] when the acceleration was higher
than 8g0. The layer could form a few static arches during the flight. The form changes due to
the layer–bottom collision. In particular, two different states of the layer are clearly visible in
figure 3 from [37].

It follows from (109) that the thicker (thinner) the layer, the lower (higher) the harmonics
are excited. Let us assume that the different signs in (109) correspond to the different states of
the layer. As a result, we can construct the next subharmonic periodical solution of equation
(80):

u = [H(sinm−1
∗ ωt)−H(− sinm−1

∗ ωt)]
∑
i

(2h2/9− 8i−2π−2L2/3)0.5 sin 2πixL−1. (110)

HereH is the Heaviside function andm∗ = 2, 4, 6, . . . . The waves obtain the opposite phase
instantly during the layer–bottom collision. One can see that solution (110) qualitatively
describes observations [37, 38].

It follows from this consideration that both topographic and parametric effects may be
important for the deep beds. The former can define harmonics which generate at the beginning
of the excitation even if the layer is initially practically flat (topography is very small). In par-
ticular, topographic resonance(ω2 = (πia0/L)

2) can take place (see (23)). The development
of these harmonics, when the excitation is increased, depends on the parametric effect.

When the excitation is intensified then small-amplitude waves transform into arch waves.
The period of oscillations of these last waves depends on the flying time. At the beginning,
the arch waves oscillate at precisely half the forcing frequency (m−1

∗ = 2 in (110)). Then, a
series of the doubling bifurcations can occur(m−1

∗ = 4, 6, . . .) and the system can move to
chaos [37, 38].
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4.5. Parametric–topographic resonant waves

If the amplitude of the standing or arch parametric waves is large enough then a periodical
horizontal force generates during the collisions. As a result, horizontally forced standing
waves may be generated in addition to the parametric waves. Of course, the former are smaller
than the latter if the forced frequency is not close to the natural horizontal frequencies�lN of
the layer orω2 6= (πia0/L)

2 (see (23)). However, at the resonances the forced waves may
be larger than the parametric waves. Thus, we suggest that counterintuitive travelling waves
generate on the free surface at the above resonances.

Indeed, these travelling waves were observed in the Faraday experiments with initially
flat granular layers (see [8, 39] and figure 15 from [38]). One can easily calculate that the
waves in figure 14 of [38] correspond to the second horizontal resonance while the waves in
[39] correspond to the second (L = 150 mm) or fourth horizontal resonances (L = 300 mm).
The theory presented in section 2 is completely applicable for these parametric–topographic
excited waves. Therefore, this case is not additionally considered. However, we note that
figure 1 apparently describes the solitary burst presented in figure 5 from [39].

5. Discussions and conclusion

Topographic effect in the Faraday experiments.We have considered different topographies
as natural resonators. In particular, a layer of a variable thickness was considered as the
topography. The perturbed wave equation (13) was derived in which a forced term was
generated because of the topography. Both d’Alembert-type (21) and non-d’Alembert-type
(94) solutions and waves were presented. It was found that in different finite dissipative–
dispersive physical systems nonlinear waves may exist which are impossible to classify as well
known soliton-, cnoidal-, shock- or breather-type waves. However, these waves are described
approximately by the same expressions: (51), (53), (55), (79) and (98). In particular, solution
(98) describesspatiotemporally oscillating, localized, nonlinear, surface waves which can
have properties of bothstandingwaves andtravellingwaves (see figures 10 and 11). Different
wave patterns were yielded by the solutions (see figures 1–3, 5, 10–12 and [40]). It was
found that, on the one hand, anomalous forced, free and parametric waves may be generated
in the topography. On the other hand, topographic, nonlinear and resonant effects explain
some anomalous results of both experiments and earthquakes. The quadratic nonlinear free
and parametric waves may be generated in layers only due to the topographic effect or/and an
initial deformed state. More intensive waves, for which the cubic term in the perturbed wave
equation is important, may be excited in the flat layers.

The shallow arch waves were described. We must note that sometimes strictly localized
travelling waves generate on the water surface additionally to the smooth standing waves. As
a result complex wave patterns are formed. These patterns have been studied in [24, 36].

It follows from the theory that the velocity of the surface waves in the Faraday experiment is
defined by the vertical excitation, geometrical and mechanical properties of a layer. According
to (13) the velocity of these waves depends on the thickness of the layer and the dispersion.
On the other hand, the wave velocity is defined by the elastic shear modulus. Because of
the vertical acceleration the wave can stop and change direction of motion (see figures 10–12
and [24]) (this anomalous behaviour is reminiscent of the behaviour of planets in the Ptolemy
model of the Universe). The effect of the voidage may be very important for the wave velocity.
Thus this velocity may be quite different from well known velocities of the shear, Rayleigh
or Love waves. In particular, for gassy or liquefied soils the shear velocity is of the order of
10 m s−1 and we can haveas 6 af in (13). Some clays can have a high water content. For
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example, Mexico City clay hasas ≈ 80 m s−1 [11]. During the September 19, 1985 Michoacan
earthquake the greatest damage occurred there where a soil thickness changes from 38 to 50 m,
whereaf ≈ 20 m s−1. One can see that an effect ofaf may be important for a prediction of
behaviour of the natural resonators during earthquakes.

The Faraday experiments realized by Nature.Hills, sedimentary basins, lakes, and a
continental shelf are natural resonators. According to the theory, under the vertical earthquake-
induced excitation these topographies can demonstrate strictly nonlinear behaviour. In
particular, in these topographies waves may be generated which recall the waves observed in
the Faraday experiments. Forced, free or parametric waves may be generated by an earthquake
in the natural resonators.

Subharmonic, localized, nonlinear, free waves may be excited in the elongate topographies
during earthquakes due to a sole shake. Indeed, sometimes a sole seismic shake may be trapped
by the topography. The frequency of the reverberations of the trapped waves can slowly reduce
or increase, for example, because of the slope of boundaries. As a result, the above-discussed
trans-resonant evolution of waves (see figures 4, 6, 8 and 9) can occur. If the frequency of
trapped waves increases because of the reverberation, then their amplitude reduces after the
resonance (see figures 6 and 8). If the frequency of trapped waves reduces, then their amplitude
can increase after the resonance (see figures 6 and 9). Therefore, a collapse of structures on the
surface of the topography can occur when the initial seismic waves had passed if the frequency
of the reverberations of the trapped waves inside of the topography reduces.

Charles Darwin noted, in similar fashion, some results of the 20 February 1835 Chilean
earthquake for a small island of Quiriquina:

‘. . . The ground was fissured in many parts, in north and south line; which direction
perhaps was caused by the yielding of the parallel and steep sides of the narrow island.
Some of the fissures near the cliffs were a yard wide. . . ’ [10].

Very long seismic waves excited the shelf and, perhaps, vertically vibrated the base of the
island. Because of the slope of the shelf, the horizontal component of the disturbing vertical
force was generated and the resonant waves were excited in the topography. Water surrounds
the island; therefore, the cliffs may be considered as approximately fixed and the theory of
section 2 is applicable. Therefore, shock-like waves (see figures 1(a) and 1(d)) might have
been generated on the surface of Quiriquina. The material near the cliffs yields to the tension
more than the material inside of the island, therefore the fissures near the cliffs of Quiriquina
were wider.

According to the theory, the trans-resonant seismic waves in a topography can have the
orderl1/2 (see, for example, (28)) orl1/3∗ (see, for example, (68)). As a result, if the dimen-
sionless amplitude of the bed oscillations is 0.001, then the nonlinear theory predicts the wave
amplitude to be of the order of(0.001)1/2 or 0.1, respectively. This dramatic result qualitatively
agrees with results of some observations [11, 26–28]. Thus, earthquake damage of structures
located on the surface or near the natural topography (resonator) may be much more dependent
upon the resonator properties than on the proximity or intensity of earthquake sources.

Thus, the solutions presented in this paper describeunfamiliar nonlinear seismic waves.
Most seismologists, apparently, have tended to dismiss nonlinear effects as a second-order
nuisance, although nonlinear aspects of the propagation and the amplification of seismic waves
have begun to be discussed intensively (seeBull. Seismol. Soc. Am.88, no 6, 1998). We have
found that nonlinear effects in natural resonators may be very important.
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Conclusion. The objective of this paper was a better understanding of the influence of
topographies on the nonlinear wave processes in bounded dispersive and dissipative media. On
the other hand, we obtained solutions unknown in nonlinear dynamics. Perhaps, these solutions
describe waves in different wave fields of Nature. Indeed, these solutions describe the water
waves which were simulated earlier with the help of the numerical solution of the Schrödinger
equation [34]. At the same time these analytical solutions describe qualitatively some results
of the numerical solutions of the Swift–Hogenberg equation (see figures 12.2–12.4 from [41]).
It was found that the Maxwell-type wave equation and the so-called scalarφ4 field equation can
have the same solutions [40]. In particular, expression (79) defines the wave-particle solution
for the field if c = 0. Waves, which are reminiscent of the waves presented here, may be
generated in spherical symmetrical systems according to [42–44]. Thus, we showed that the
above solutions and the methods of nonlinear acoustics [45] allow one to study various wave
fields in Nature.
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